Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
Nat Metab ; 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561509

Disruption of circadian rhythm during pregnancy produces adverse health outcomes in offspring; however, the role of maternal circadian rhythms in the immune system of infants and their susceptibility to inflammation remains poorly understood. Here we show that disruption of circadian rhythms in pregnant mice profoundly aggravates the severity of neonatal inflammatory disorders in both male and female offspring, such as necrotizing enterocolitis and sepsis. The diminished maternal production of docosahexaenoic acid (DHA) and the impaired immunosuppressive function of neonatal myeloid-derived suppressor cells (MDSCs) contribute to this phenomenon. Mechanistically, DHA enhances the immunosuppressive function of MDSCs via PPARγ-mediated mitochondrial oxidative phosphorylation. Transfer of MDSCs or perinatal supplementation of DHA relieves neonatal inflammation induced by maternal rhythm disruption. These observations collectively demonstrate a previously unrecognized role of maternal circadian rhythms in the control of neonatal inflammation via metabolic reprograming of myeloid cells.

2.
Nat Commun ; 14(1): 8332, 2023 Dec 14.
Article En | MEDLINE | ID: mdl-38097561

Microbiota have an important function in shaping and priming neonatal immunity, although the cellular and molecular mechanisms underlying these effects remain obscure. Here we report that prenatal antibiotic exposure causes significant elevation of group 2 innate lymphoid cells (ILC2s) in neonatal lungs, in both cell numbers and functionality. Downregulation of type 1 interferon signaling in ILC2s due to diminished production of microbiota-derived butyrate represents the underlying mechanism. Mice lacking butyrate receptor GPR41 (Gpr41-/-) or type 1 interferon receptor IFNAR1 (Ifnar1-/-) recapitulate the phenotype of neonatal ILC2s upon maternal antibiotic exposure. Furthermore, prenatal antibiotic exposure induces epigenetic changes in ILC2s and has a long-lasting deteriorative effect on allergic airway inflammation in adult offspring. Prenatal supplementation of butyrate ameliorates airway inflammation in adult mice born to antibiotic-exposed dams. These observations demonstrate an essential role for the microbiota in the control of type 2 innate immunity at the neonatal stage, which suggests a therapeutic window for treating asthma in early life.


Anti-Bacterial Agents , Immunity, Innate , Interferon Type I , Lymphocytes , Animals , Mice , Butyrates , Cytokines , Down-Regulation , Inflammation , Lung , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Maternal Exposure , Interferon Type I/drug effects , Interferon Type I/metabolism
3.
Nat Commun ; 14(1): 8517, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-38129441

Telomere length (TL) shortening is a pivotal indicator of biological aging and is associated with many human diseases. The genetic determinates of human TL have been widely investigated, however, most existing studies were conducted based on adult tissues which are heavily influenced by lifetime exposure. Based on the analyses of terminal restriction fragment (TRF) length of telomere, individual genotypes, and gene expressions on 166 healthy placental tissues, we systematically interrogate TL-modulated genes and their potential functions. We discover that the TL in the placenta is comparatively longer than in other adult tissues, but exhibiting an intra-tissue homogeneity. Trans-ancestral TL genome-wide association studies (GWASs) on 644,553 individuals identify 20 newly discovered genetic associations and provide increased polygenic determination of human TL. Next, we integrate the powerful TL GWAS with placental expression quantitative trait locus (eQTL) mapping to prioritize 23 likely causal genes, among which 4 are functionally validated, including MMUT, RRM1, KIAA1429, and YWHAZ. Finally, modeling transcriptomic signatures and TRF-based TL improve the prediction performance of human TL. This study deepens our understanding of causal genes and transcriptomic determinants of human TL, promoting the mechanistic research on fine-grained TL regulation.


Genome-Wide Association Study , Placenta , Adult , Humans , Female , Pregnancy , Placenta/metabolism , Telomere Shortening , Telomere/genetics , Gene Expression Profiling
4.
Genome Biol ; 24(1): 248, 2023 10 30.
Article En | MEDLINE | ID: mdl-37904237

BACKGROUND: The high mutation rate throughout the entire melanoma genome presents a major challenge in stratifying true driver events from the background mutations. Numerous recurrent non-coding alterations, such as those in enhancers, can shape tumor evolution, thereby emphasizing the importance in systematically deciphering enhancer disruptions in melanoma. RESULTS: Here, we leveraged 297 melanoma whole-genome sequencing samples to prioritize highly recurrent regions. By performing a genome-scale CRISPR interference (CRISPRi) screen on highly recurrent region-associated enhancers in melanoma cells, we identified 66 significant hits which could have tumor-suppressive roles. These functional enhancers show unique mutational patterns independent of classical significantly mutated genes in melanoma. Target gene analysis for the essential enhancers reveal many known and hidden mechanisms underlying melanoma growth. Utilizing extensive functional validation experiments, we demonstrate that a super enhancer element could modulate melanoma cell proliferation by targeting MEF2A, and another distal enhancer is able to sustain PTEN tumor-suppressive potential via long-range interactions. CONCLUSIONS: Our study establishes a catalogue of crucial enhancers and their target genes in melanoma growth and progression, and illuminates the identification of novel mechanisms of dysregulation for melanoma driver genes and new therapeutic targeting strategies.


Enhancer Elements, Genetic , Melanoma , Humans , Melanoma/genetics , Melanoma/pathology , Mutation
5.
Patterns (N Y) ; 4(8): 100798, 2023 Aug 11.
Article En | MEDLINE | ID: mdl-37602215

CCCTC-binding factor (CTCF) is a transcription regulator with a complex role in gene regulation. The recognition and effects of CTCF on DNA sequences, chromosome barriers, and enhancer blocking are not well understood. Existing computational tools struggle to assess the regulatory potential of CTCF-binding sites and their impact on chromatin loop formation. Here we have developed a deep-learning model, DeepAnchor, to accurately characterize CTCF binding using high-resolution genomic/epigenomic features. This has revealed distinct chromatin and sequence patterns for CTCF-mediated insulation and looping. An optimized implementation of a previous loop model based on DeepAnchor score excels in predicting CTCF-anchored loops. We have established a compendium of CTCF-anchored loops across 52 human tissue/cell types, and this suggests that genomic disruption of these loops could be a general mechanism of disease pathogenesis. These computational models and resources can help investigate how CTCF-mediated cis-regulatory elements shape context-specific gene regulation in cell development and disease progression.

7.
Elife ; 122023 03 07.
Article En | MEDLINE | ID: mdl-36880874

Cerebral ischaemia‒reperfusion injury (IRI), during which neurons undergo oxygen-glucose deprivation/reoxygenation (OGD/R), is a notable pathological process in many neurological diseases. N1-methyladenosine (m1A) is an RNA modification that can affect gene expression and RNA stability. The m1A landscape and potential functions of m1A modification in neurons remain poorly understood. We explored RNA (mRNA, lncRNA, and circRNA) m1A modification in normal and OGD/R-treated mouse neurons and the effect of m1A on diverse RNAs. We investigated the m1A landscape in primary neurons, identified m1A-modified RNAs, and found that OGD/R increased the number of m1A RNAs. m1A modification might also affect the regulatory mechanisms of noncoding RNAs, e.g., lncRNA-RNA binding proteins (RBPs) interactions and circRNA translation. We showed that m1A modification mediates the circRNA/lncRNA‒miRNA-mRNA competing endogenous RNA (ceRNA) mechanism and that 3' untranslated region (3'UTR) modification of mRNAs can hinder miRNA-mRNA binding. Three modification patterns were identified, and genes with different patterns had intrinsic mechanisms with potential m1A-regulatory specificity. Systematic analysis of the m1A landscape in normal and OGD/R neurons lays a critical foundation for understanding RNA modification and provides new perspectives and a theoretical basis for treating and developing drugs for OGD/R pathology-related diseases.


MicroRNAs , RNA, Long Noncoding , Animals , Mice , RNA, Circular/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , 3' Untranslated Regions , Glucose , Neurons , Oxygen
8.
BMC Geriatr ; 23(1): 122, 2023 03 04.
Article En | MEDLINE | ID: mdl-36870957

BACKGROUND: Constipation was associated with incidence of dementia and cognitive decline. Laxatives are the mainstay of constipation management and are commonly used among older populations for both treatment and prevention of constipation. However, the association between use of laxatives and incident dementia, and whether laxatives use may modify the effect of genetic predisposition on dementia remains unclear. METHODS: We applied 1:3 propensity score matching to balance the baseline characteristics of the laxative users versus non-users and to reduce potential confounders using multi-variates adjusted Cox hazards regression models. We categorized genetic risk into three groups (low, middle, and high) through a genetic risk score of common genetic variants. Information on laxatives use was assessed at baseline and categories into four varieties, including bulk forming laxatives, softeners and emollients, osmotic laxatives, and stimulant laxatives. RESULTS: Of 486,994 participants, there were 14,422 laxatives users in UK Biobank. After propensity score matching, participants with use of laxatives (n = 14,422) and matched non-laxative (n = 43,266) exposed individuals were enrolled. Over follow-up to 15 years, there were 1377 participants developed dementia (539 for Alzheimer's disease, and 343 for vascular dementia). The use of laxatives had greater risk of dementia (HR, 1.72; 95% CI:1.54-1.92), Alzheimer's disease (HR, 1.36; 95% CI: 1.13-1.63), and vascular dementia (HR, 1.53; 95% CI: 1.23-1.92). Compared to non-laxative exposed participants, those with use of softeners and emollients drugs, stimulant laxatives, and osmotic laxatives were associated with 96% (HR, 1.96; 95 CI: 1.23-3.12; P = 0.005), 80% (HR, 1.80; 95% CI: 1.37-2.37; P < 0.001), and 107% (HR, 2.07; 95% CI: 1.47-2.92; P < 0.001) higher risk of developed incident dementia, respectively. In joint effect analysis, compared to participants with low/middle genetic susceptibility and non-laxatives use, the HR (95% CIs) of dementia was 4.10 (3.49-4.81) for those with high genetic susceptibility plus use of laxatives. There was an additive interaction between laxatives use and genetic susceptibility on dementia (RERI: 0.736, 95% CI: 0.127 to 1.246; AP: 0.180, 95% CI: 0.047 to 0.312). CONCLUSIONS: Use of laxatives was associated with higher risk of dementia and modify the effect of genetic susceptibility on dementia. Our findings suggested that attention should be paid to the relationship between laxatives use and dementia, especially in people at high genetic susceptibility.


Alzheimer Disease , Dementia, Vascular , Humans , Laxatives , Genetic Predisposition to Disease , Cohort Studies , Emollients , Propensity Score , Constipation
9.
Nat Commun ; 14(1): 1208, 2023 03 03.
Article En | MEDLINE | ID: mdl-36869052

Genetic sharing is extensively observed for autoimmune diseases, but the causal variants and their underlying molecular mechanisms remain largely unknown. Through systematic investigation of autoimmune disease pleiotropic loci, we found most of these shared genetic effects are transmitted from regulatory code. We used an evidence-based strategy to functionally prioritize causal pleiotropic variants and identify their target genes. A top-ranked pleiotropic variant, rs4728142, yielded many lines of evidence as being causal. Mechanistically, the rs4728142-containing region interacts with the IRF5 alternative promoter in an allele-specific manner and orchestrates its upstream enhancer to regulate IRF5 alternative promoter usage through chromatin looping. A putative structural regulator, ZBTB3, mediates the allele-specific loop to promote IRF5-short transcript expression at the rs4728142 risk allele, resulting in IRF5 overactivation and M1 macrophage polarization. Together, our findings establish a causal mechanism between the regulatory variant and fine-scale molecular phenotype underlying the dysfunction of pleiotropic genes in human autoimmunity.


Autoimmune Diseases , DNA-Binding Proteins , Interferon Regulatory Factors , Humans , Alleles , Autoimmunity , Chromatin , Polymorphism, Single Nucleotide , Promoter Regions, Genetic
10.
Nucleic Acids Res ; 51(D1): D1122-D1128, 2023 01 06.
Article En | MEDLINE | ID: mdl-36330927

Deciphering the fine-scale molecular mechanisms that shape the genetic effects at disease-associated loci from genome-wide association studies (GWAS) remains challenging. The key avenue is to identify the essential molecular phenotypes that mediate the causal variant and disease under particular biological conditions. Therefore, integrating GWAS signals with context-specific quantitative trait loci (QTLs) (such as different tissue/cell types, disease states, and perturbations) from extensive molecular phenotypes would present important strategies for full understanding of disease genetics. Via persistent curation and systematic data processing of large-scale human molecular trait QTLs (xQTLs), we updated our previous QTLbase database (now QTLbase2, http://mulinlab.org/qtlbase) to comprehensively analyze and visualize context-specific QTLs across 22 molecular phenotypes and over 95 tissue/cell types. Overall, the resource features the following major updates and novel functions: (i) 960 more genome-wide QTL summary statistics from 146 independent studies; (ii) new data for 10 previously uncompiled QTL types; (iii) variant query scope expanded to fit 195 QTL datasets based on whole-genome sequencing; (iv) supports filtering and comparison of QTLs for different biological conditions, such as stimulation types and disease states; (v) a new linkage disequilibrium viewer to facilitate variant prioritization across tissue/cell types and QTL types.


Genome-Wide Association Study , Quantitative Trait Loci , Humans , Chromosome Mapping , Linkage Disequilibrium , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Catalogs as Topic
11.
STAR Protoc ; 3(2): 101382, 2022 06 17.
Article En | MEDLINE | ID: mdl-35600920

Precise identification of context-specific transcriptional regulators (TRs) cooperation facilitates the understanding of complex gene regulation. However, previous methods are highly reliant on the availability of ChIPped TRs. Here, we provide a protocol for running 3DCoop, a pipeline for computational inference of cell type-specific TR cooperation in 3D chromatin by integrating TR motifs, open chromatin profiles, gene expression, and chromatin loops. 3DCoop provides a feasible solution to study the potential interplay among TRs across multiple human or mouse tissue/cell types. For complete details on the use and execution of this protocol, please refer to Yi et al. (2021).


Chromatin , Transcription Factors , Animals , Chromatin/genetics , Gene Expression Regulation , Humans , Mice , Transcription Factors/genetics
12.
Nucleic Acids Res ; 50(D1): D1408-D1416, 2022 01 07.
Article En | MEDLINE | ID: mdl-34570217

Interpreting the molecular mechanism of genomic variations and their causal relationship with diseases/traits are important and challenging problems in the human genetic study. To provide comprehensive and context-specific variant annotations for biologists and clinicians, here, by systematically integrating over 4TB genomic/epigenomic profiles and frequently-used annotation databases from various biological domains, we develop a variant annotation database, called VannoPortal. In general, the database has following major features: (i) systematically integrates 40 genome-wide variant annotations and prediction scores regarding allele frequency, linkage disequilibrium, evolutionary signature, disease/trait association, tissue/cell type-specific epigenome, base-wise functional prediction, allelic imbalance and pathogenicity; (ii) equips with our recent novel index system and parallel random-sweep searching algorithms for efficient management of backend databases and information extraction; (iii) greatly expands context-dependent variant annotation to incorporate large-scale epigenomic maps and regulatory profiles (such as EpiMap) across over 33 tissue/cell types; (iv) compiles many genome-scale base-wise prediction scores for regulatory/pathogenic variant classification beyond protein-coding region; (v) enables fast retrieval and direct comparison of functional evidence among linked variants using highly interactive web panel in addition to plain table; (vi) introduces many visualization functions for more efficient identification and interpretation of functional variants in single web page. VannoPortal is freely available at http://mulinlab.org/vportal.


Databases, Genetic , Genetic Diseases, Inborn/genetics , Genetic Variation/genetics , Molecular Sequence Annotation , Algorithms , Epigenome/genetics , Genetic Diseases, Inborn/classification , Genome, Human/genetics , Genome-Wide Association Study , Genotype , Humans , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Software
13.
Gastroenterology ; 162(1): 238-252, 2022 01.
Article En | MEDLINE | ID: mdl-34481846

BACKGROUND & AIMS: Copy number alterations (CNAs), elicited by genome instability, are a major source of intratumor heterogeneity. How CNAs evolve in hepatocellular carcinoma (HCC) remains unknown. METHODS: We performed single-cell DNA sequencing (scDNA-seq) on 1275 cells isolated from 10 patients with HCC, ploidy-resolved scDNA-seq on 356 cells from 1 additional patient, and single-cell RNA sequencing on 27,344 cells from 3 additional patients. Three statistical fitting models were compared to investigate the CNA accumulation pattern. RESULTS: Cells in the tumor were categorized into the following 3 subpopulations: euploid, pseudoeuploid, and aneuploid. Our scDNA-seq analysis revealed that CNA accumulation followed a dual-phase copy number evolution model, that is, a punctuated phase followed by a gradual phase. Patients who exhibited prolonged gradual phase showed higher intratumor heterogeneity and worse disease-free survival. Integrating bulk RNA sequencing of 17 patients with HCC, published datasets of 1196 liver tumors, and immunohistochemical staining of 202 HCC tumors, we found that high expression of CAD, a gene involved in pyrimidine synthesis, was correlated with rapid tumorigenesis and reduced survival. The dual-phase copy number evolution model was validated by our single-cell RNA sequencing data and published scDNA-seq datasets of other cancer types. Furthermore, ploidy-resolved scDNA-seq revealed the common clonal origin of diploid- and polyploid-aneuploid cells, suggesting that polyploid tumor cells were generated by whole genome doubling of diploid tumor cells. CONCLUSIONS: Our work revealed a novel dual-phase copy number evolution model, showed HCC with longer gradual phase was more severe, identified CAD as a promising biomarker for early recurrence of HCC, and supported the diploid origin of polyploid HCC.


Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Clonal Evolution , Genetic Heterogeneity , Liver Neoplasms/genetics , Sequence Analysis, DNA , Single-Cell Analysis , Adult , Aged , Carcinoma, Hepatocellular/metabolism , DNA Copy Number Variations , Disease Progression , Disease-Free Survival , Female , Gene Dosage , Gene Expression Regulation, Neoplastic , Genomic Instability , Humans , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Male , Middle Aged , Models, Genetic , Neoplasm Recurrence, Local , Ploidies , Time Factors
14.
iScience ; 24(12): 103468, 2021 Dec 17.
Article En | MEDLINE | ID: mdl-34888502

Context-specific activities of transcription regulators (TRs) in the nucleus modulate spatiotemporal gene expression precisely. Using the largest ChIP-seq data and chromatin loops in the human K562 cell line, we initially interrogated TR cooperation in 3D chromatin via a graphical model and revealed many known and novel TRs manipulating context-specific pathways. To explore TR cooperation across broad tissue/cell types, we systematically leveraged large-scale open chromatin profiles, computational footprinting, and high-resolution chromatin interactions to investigate tissue/cell type-specific TR cooperation. We first delineated a landscape of TR cooperation across 40 human tissue/cell types. Network modularity analyses uncovered the commonality and specificity of TR cooperation in different conditions. We also demonstrated that TR cooperation information can better interpret the disease-causal variants identified by genome-wide association studies and recapitulate cell states during neural development. Our study characterizes shared and unique patterns of TR cooperation associated with the cell type specificity of gene regulation in 3D chromatin.

15.
Am J Case Rep ; 22: e933322, 2021 Sep 24.
Article En | MEDLINE | ID: mdl-34556624

BACKGROUND Carbon monoxide poisoning is a common reason for Emergency Department admissions worldwide. The symptoms of carbon monoxide poisoning vary from headache and dizziness to severe neuropsychological and cardiac impairment. However, psoas major and iliopsoas hematomas are a rare complication of carbon monoxide poisoning. CASE REPORT A 46-year-old man with carbon monoxide poisoning, after he had been exposed to burning coal without proper ventilation, presented with right low back pain on day 7 after onset. After 2 days, ecchymosis of the right flank occurred, and his hemoglobin concentration gradually decreased. Psoas major and iliopsoas hematomas were shown on computed tomography (CT). The hematomas were successfully treated with transfusions and physical therapy. Owing to the absence of skeletal muscle compartment syndrome, surgical decompression was unnecessary. The patient did not receive anticoagulant therapy during his hospitalization. CONCLUSIONS The direct toxicity of carbon monoxide on the muscles and body weight-induced muscle compression caused skeletal muscle ischemia and necrosis in our patient. The risk of rhabdomyolysis and coagulation abnormality was elevated. Finally, intramuscular hemorrhages occurred in our patient. When a patient has back pain and decreased hemoglobin levels, clinicians should consider the possibility of psoas major and iliopsoas hematomas, and the administration of anticoagulation should be used with caution after admission.


Carbon Monoxide Poisoning , Muscular Diseases , Anticoagulants/therapeutic use , Hematoma/chemically induced , Humans , Male , Middle Aged , Psoas Muscles/diagnostic imaging
16.
Nucleic Acids Res ; 49(8): 4421-4440, 2021 05 07.
Article En | MEDLINE | ID: mdl-33849069

Although overexpression of EZH2, a catalytic subunit of the polycomb repressive complex 2 (PRC2), is an eminent feature of various cancers, the regulation of its abundance and function remains insufficiently understood. We report here that the PRC2 complex is physically associated with ubiquitin-specific protease USP7 in cancer cells where USP7 acts to deubiquitinate and stabilize EZH2. Interestingly, we found that USP7-catalyzed H2BK120ub1 deubiquitination is a prerequisite for chromatin loading of PRC2 thus H3K27 trimethylation, and this process is not affected by H2AK119 ubiquitination catalyzed by PRC1. Genome-wide analysis of the transcriptional targets of the USP7/PRC2 complex identified a cohort of genes including FOXO1 that are involved in cell growth and proliferation. We demonstrated that the USP7/PRC2 complex drives cancer cell proliferation and tumorigenesis in vitro and in vivo. We showed that the expression of both USP7 and EZH2 elevates during tumor progression, corresponding to a diminished FOXO1 expression, and the level of the expression of USP7 and EZH2 strongly correlates with histological grades and prognosis of tumor patients. These results reveal a dual role for USP7 in the regulation of the abundance and function of EZH2, supporting the pursuit of USP7 as a therapeutic target for cancer intervention.


Carcinogenesis , Enhancer of Zeste Homolog 2 Protein/metabolism , Polycomb Repressive Complex 2/metabolism , Ubiquitin-Specific Peptidase 7/metabolism , Animals , Female , Forkhead Box Protein O1/metabolism , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Sf9 Cells , Ubiquitination , Xenograft Model Antitumor Assays
17.
Epigenetics Chromatin ; 14(1): 18, 2021 03 31.
Article En | MEDLINE | ID: mdl-33789751

BACKGROUND: Maternal protein restriction diet (PRD) increases the risk of metabolic dysfunction in adulthood, the mechanisms during the early life of offspring are still poorly understood. Apart from genetic factors, epigenetic mechanisms are crucial to offer phenotypic plasticity in response to environmental situations and transmission. Enhancer-associated noncoding RNAs (eRNAs) transcription serves as a robust indicator of enhancer activation, and have potential roles in mediating enhancer functions and gene transcription. RESULTS: Using global run-on sequencing (GRO-seq) of nascent RNA including eRNA and total RNA sequencing data, we show that early-life undernutrition causes remodeling of enhancer activity in mouse liver. Differentially expressed nascent active genes were enriched in metabolic pathways. Besides, our work detected a large number of high confidence enhancers based on eRNA transcription at the ages of 4 weeks and 7 weeks, respectively. Importantly, except for ~ 1000 remodeling enhancers, the early-life undernutrition induced instability of enhancer activity which decreased in 4 weeks and increased in adulthood. eRNA transcription mainly contributes to the regulation of some important metabolic enzymes, suggesting a link between metabolic dysfunction and enhancer transcriptional control. We discovered a novel eRNA that is positively correlated to the expression of circadian gene Cry1 with increased binding of epigenetic cofactor p300. CONCLUSIONS: Our study reveals novel insights into mechanisms of metabolic dysfunction. Enhancer activity in early life acts on metabolism-associated genes, leading to the increased susceptibility of metabolic disorders.


Malnutrition , RNA , Animals , Enhancer Elements, Genetic , Liver , Malnutrition/genetics , Mice , Transcription, Genetic
18.
Matrix Biol ; 95: 32-51, 2021 01.
Article En | MEDLINE | ID: mdl-33068727

Disturbed flow leads to increased inflammatory responses of endothelial cells (ECs) prone to atherogenic state. Currently, little is known about the physiological mechanisms protecting vasculature against disturbed flow-activated ECs leading to atherosclerosis. Understanding the protective mediators involved in EC activation could provide novel therapeutic strategies for atherosclerosis. The extracellular matrix microenvironment profoundly regulates cellular homeostasis. A non-EC resident ECM protein, cartilage oligomeric matrix protein (COMP), has diverse protective roles in the cardiovascular system. To determine whether COMP could protect against disturbed flow-activated EC and atherosclerosis, we compared oscillatory shear stress (OSS) induced EC activation coated with various ECM proteins. Purified COMP inhibited EC activation caused by OSS. EC activation was upregulated in the aortic arch where the flow is disturbed in COMP-/- mice as compared with wild-type mice under physiological conditions or pathologically in partially ligated mouse carotid arteries. Mechanistically, co-immunoprecipitation, mammalian two-hybrid and FRET assay results suggest that COMP bound directly to integrin α5 via its C-terminus. We next synthesized a COMP-derived peptidomimetics (CCPep24) mimicking a specific COMP-integrin α5 interaction and found that CCPep24 protected against EC activation and atherogenesis in vivo. This study extends our current understanding of how ECM and flow coordinately fine-tune EC homeostasis and reveals the potential therapeutic effect of COMP or COMP-derived peptidomimetics on blocking aberrant integrin α5 activation, inflammatory EC activation and atherosclerosis pathogenesis.


Atherosclerosis/genetics , Cartilage Oligomeric Matrix Protein/genetics , Integrin alpha5/genetics , Animals , Atherosclerosis/pathology , Cardiovascular System/metabolism , Cardiovascular System/pathology , Cellular Microenvironment/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Extracellular Matrix/genetics , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Knockout , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Peptidomimetics/pharmacology , Protein Interaction Maps/genetics
19.
Genome Res ; 30(12): 1789-1801, 2020 12.
Article En | MEDLINE | ID: mdl-33060171

The advances of large-scale genomics studies have enabled compilation of cell type-specific, genome-wide DNA functional elements at high resolution. With the growing volume of functional annotation data and sequencing variants, existing variant annotation algorithms lack the efficiency and scalability to process big genomic data, particularly when annotating whole-genome sequencing variants against a huge database with billions of genomic features. Here, we develop VarNote to rapidly annotate genome-scale variants in large and complex functional annotation resources. Equipped with a novel index system and a parallel random-sweep searching algorithm, VarNote shows substantial performance improvements (two to three orders of magnitude) over existing algorithms at different scales. It supports both region-based and allele-specific annotations and introduces advanced functions for the flexible extraction of annotations. By integrating massive base-wise and context-dependent annotations in the VarNote framework, we introduce three efficient and accurate pipelines to prioritize the causal regulatory variants for common diseases, Mendelian disorders, and cancers.


Computational Biology/methods , Genetic Predisposition to Disease/genetics , Algorithms , Databases, Genetic , Genetic Variation , Genome, Human , Humans , Molecular Sequence Annotation , Whole Genome Sequencing
20.
Sci Adv ; 6(16): eaaz0356, 2020 04.
Article En | MEDLINE | ID: mdl-32494608

TUDOR domain-containing proteins (TDRDs) are chiefly responsible for recognizing methyl-lysine/arginine residue. However, how TDRD dysregulation contributes to breast tumorigenesis is poorly understood. Here, we report that TUDOR domain-containing PHF20L1 as a H3K27me2 reader exerts transcriptional repression by recruiting polycomb repressive complex 2 (PRC2) and Mi-2/nucleosome remodeling and deacetylase (NuRD) complex, linking PRC2-mediated methylation and NuRD-mediated deacetylation of H3K27. Furthermore, PHF20L1 was found to serve as a potential MYC and hypoxia-driven oncogene, promoting glycolysis, proliferation, and metastasis of breast cancer cells by directly inhibiting tumor suppressors such as HIC1, KISS1, and BRCA1. PHF20L1 expression was also strongly correlated with higher histologic grades of breast cancer and markedly up-regulated in several cancers. Meanwhile, Phf20l1 deletion not only induces growth retardation and mammary ductal outgrowth delay but also inhibits tumorigenesis in vivo. Our data indicate that PHF20L1 promotes tumorigenesis, supporting the pursuit of PHF20L1 as a target for cancer therapy.


Breast Neoplasms , Mi-2 Nucleosome Remodeling and Deacetylase Complex , Breast Neoplasms/genetics , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Chromosomal Proteins, Non-Histone/metabolism , Female , Humans , Methylation , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Polycomb Repressive Complex 2/metabolism
...